Lecture 4 (preliminary version)

Afshin Goodarzi*

Royal Institute of Technology, Department of Mathematics, S-100 44, Stockholm, Sweden.

Introduction

Simplicial Homology

Let \mathbb{F} be a field or the ring \mathbb{Z} of integers. Let \mathcal{K} be a simplicial complex and let \mathcal{K}_n denote the set of all n-faces of \mathcal{K} . Fix a total ordering $v_0 < v_1 < \ldots < v_s$ on \mathcal{K}_0 . For each n and each $\sigma \in \mathcal{K}_n$ introduce a symbol $[\sigma] = [v_{i_0}, v_{i_1}, \ldots, v_{i_n}]$ where $\sigma_0 = \{v_{i_0}, v_{i_1}, \ldots, v_{i_n}\}$ and $i_0 < i_1 < \ldots < i_n$. Let $C_n(\mathcal{K}; \mathbb{F}) = \bigoplus_{\sigma \in \mathcal{K}_n} \mathbb{F}[\sigma]$ be the \mathbb{F} -vector space (free abelian group if $\mathbb{F} = \mathbb{Z}$) of dimension $f_n(\mathcal{K})$ generated by the symbols $[\sigma]$. Notice that as we consider empty set as a face of \mathcal{K} of dimension -1 we have $C_{-1}(\mathcal{K}; \mathbb{F}) \cong \mathbb{F}$. The elements of $C_n(\mathcal{K}; \mathbb{F})$ are called n-dimensional chains or n-chains of \mathcal{K} and $C_n(\mathcal{K}; \mathbb{F})$ itself is called the space of n-chains.

Boundary Maps. Now we want to define a boundary map $\partial_n : C_n(\mathcal{K}; \mathbb{F}) \to C_{n-1}(\mathcal{K}; \mathbb{F})$ that agrees with our intuition of the notion of boundary. In order to do so, it suffices to define the boundary map for generators since every element of $C_n(\mathcal{K}; \mathbb{F})$ has a unique expression as linear combination of generators. We define

$$\partial_n([v_{i_0}, v_{i_1}, \dots, v_{i_n}]) = \sum_{j=0}^n (-1)^j [v_{i_0}, v_{i_1}, \dots, v_{i_{j-1}}, \hat{v}_{i_j}, v_{i_{j+1}}, \dots, v_{i_n}],$$

where \hat{v}_{i_j} denotes the omission of v_{i_j} . We also define $\partial_{-1}: C_{-1}(\mathcal{K}; \mathbb{F}) \to 0$ in the obvious way.

Cycles and Boundaries An *n*-chain *c* is called an *n*-cycle if $\partial_n(c) = 0$, that is to say if $c \in \ker \partial_n$. The set of all *n*-cycles (i.e., $\ker \partial_n$) is denoted by $Z_n(\mathcal{K}; \mathbb{F})$. An *n*-chain *c* is called an *n*-boundary if $\partial_{n+1}(c') = c$ for some (n+1)-chain c'. The set of all *n*-boundaries (i.e., $\operatorname{Im} \partial_{n+1})$ is denoted by $B_n(\mathcal{K}; \mathbb{F})$. Clearly, $Z_n(\mathcal{K}; \mathbb{F})$ and $B_n(\mathcal{K}; \mathbb{F})$ inherits the algebraic structure from $C_n(\mathcal{K}; \mathbb{F})$.

Lemma 1. Let K be a simplicial complex. Then $\partial_n \circ \partial_{n+1} : C_{n+1}(K; \mathbb{F}) \to C_{n-1}(K; \mathbb{F})$ is the zero map. In particular $B_n(K; \mathbb{F}) \subseteq Z_n(K; \mathbb{F})$.

Proof. It is enough to show that $\partial_n \circ \partial_{n+1}([\sigma]) = 0$ for all $\sigma \in \mathcal{K}_{n+1}$. Fix a total ordering < on vertices of \mathcal{K} and let $\sigma_0 = \{u_0, u_1, \dots, u_{n+1}\}$ with $u_i < u_j$ if and only if i < j. Every term with non-zero coefficient in $\partial_n \circ \partial_{n+1}([\sigma])$ is of the form

$$[u_0,\ldots,u_{i-1},\hat{u}_i,u_{i+1},\ldots,u_{j-1},\hat{u}_j,u_{j+1},\ldots,u_{n+1}].$$

However, this term appears exactly twice (with non-zero coefficient) in $\partial_n \circ \partial_{n+1}([\sigma])$; once with coefficient $(-1)^{i+j}$ and once with coefficient $(-1)^{i+j-1}$.

^{*}af.goodarzi@gmail.com

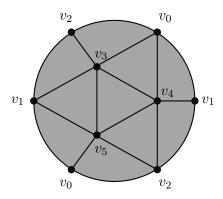


Figure 1: A Triangulation of Real Projective Plane

Reduced Simplicial Homology. The quotient $\widetilde{H}_n(\mathcal{K}; \mathbb{F}) = Z_n(\mathcal{K}; \mathbb{F})/B_n(\mathcal{K}; \mathbb{F})$ is called the *n-th* reduced simplicial homology of \mathcal{K} (with \mathbb{F} -coefficients). The *n-th* \mathbb{F} -Betti number (or just Betti number) $\widetilde{\beta}_n(\mathcal{K}; \mathbb{F})$ of \mathcal{K} is the dimension of $\dim_{\mathbb{F}} \widetilde{H}_n(\mathcal{K}; \mathbb{F})$ as a vector space (or its rank as an abelian group when $\mathbb{F} = \mathbb{Z}$).

Proposition 2. The number of connected components of a simplicial complex K is equal to $\widetilde{\beta}_0(K; \mathbb{F}) + 1$. Proof.

Definition 3 (Cohen-Macaulay Complexes). A simplical complex \mathcal{K} is *Cohen-Macaulay* over \mathbb{F} (or \mathbb{F} -CM) if for all faces σ of \mathcal{K} one has $\widetilde{H}_i(\mathrm{lk}_{\mathcal{K}}\ \sigma;\mathbb{F})=0$ for all $i<\dim\mathcal{K}-\dim\sigma-1$.

Proposition 4. Cohen-Macaulayness depends on \mathbb{F} .

Proof.
$$\Box$$

Let \mathcal{K} be a pure simplicial complex. The *dual graph* of \mathcal{K} is a graph whose set of vertices are the set of facets of \mathcal{K} and two vertices are connected by an edge if and only if their corresponding facets intersect in codimension one. A simplicial complex \mathcal{K} is *strongly connected* if it is pure and its dual graph is connected in graph theoretic sense.

Proposition 5. Any Cohen-Macaulay complex is strongly connected.

Proof.
$$\Box$$

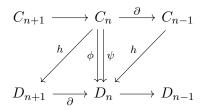
Some Notions from Homological Algebra

Chain Complexes. Let R be a commutative ring. A chain complex \mathscr{C} of R-modules is a family $\{(C_n, \partial_n)\}_{n \in \mathbb{Z}}$ of R-modules C_n and R-module homomorphism $\partial_n : C_n \to C_{n-1}$ such that $\partial_n \circ \partial_{n+1} = 0$ or equivalently $Z_n := \text{Im } \partial_{n+1} \subseteq B_n := \ker \partial_n$. The homomorphisms ∂_n are called boundary maps of differentials of \mathscr{C} . We denote the differentials always by ∂_n or simply by ∂ . If we want to emphasize that ∂ is differential of \mathscr{C} , we write $\partial^{\mathscr{C}}$. The elements of Z_n are cycles and those of B_n are boundaries. The quotient submodule $H_n(\mathscr{C}) = Z_n/B_n$ is called the n-th homology module of \mathscr{C} . The chain complex that we constructed for a simplicial complex is called the simplicial chain complex.

Chain Maps. A chain map between chain complexes $\Phi : \mathscr{C} \to \mathscr{D}$ is a family of homomorphisms $\phi_n : C_n \to D_n$ that commutes with differentials. That is to say, every square in the diagram

is commutative. It is easy to check that a chain map Φ takes boundaries to boundaries and cycles to cycles. Therefore, it induces a map Φ_* between homology modules.

Chain Equivalence. Two chain maps Φ and Ψ between \mathscr{C} and \mathscr{D} are homotopic if there exists a family $\mathbb{H} = \{h_n\}$ of homomorphism $h_n : C_n \to D_{n+1}$ such that $\phi_n - \psi_n = \partial_{n+1}h_n + h_{n-1}\partial_n$. These maps are illustrated in the diagram below. The maps h_n are called *chain homotopy*.



Lemma 6. If Φ and Ψ are two homotopic chain maps from \mathscr{C} to \mathscr{D} , then they induce the same maps on homology modules.

Proof. For any cycle c we have $\phi(c) - \psi(c) = \partial h(c) - h\partial(c) = \partial h(c)$. Hence, $\phi(c)$ and $\psi(c)$ differ by a boundary and , consequently, they belong to the same homology class.

Two chain complexes \mathscr{C} and \mathscr{D} are chain homotopy equivalent if there is a pair (Φ, Ψ) of chain maps $\Phi : \mathscr{C} \to \mathscr{D}$ and $\Psi : \mathscr{D} \to \mathscr{C}$ such that $\Psi\Phi$ is homotopic to the identity map of \mathscr{C} and $\Phi\Psi$ is homotopic to the identity map of \mathscr{D} . The pair (Φ, Ψ) is called a homotopy equivalence.

Theorem 7. If \mathscr{C} and \mathscr{D} are chain homotopy equivalent, then $H_n(\mathscr{C}) = H_n(\mathscr{D})$ for all n.

Later, we give a topological intuition of chain homotopy.

Proposition 8. If K and L are simple homotopy equivalent, then $\widetilde{H}_n(K; \mathbb{F}) \cong \widetilde{H}_n(L; \mathbb{F})$ for all n. In particular, If K is contractible, then K is acyclic.

Proof. It suffices to show that if \mathcal{L} is obtained by from \mathcal{K} by an elementary collapse of $\tau < \sigma$, then $\widetilde{H}_n(\mathcal{K}; \mathbb{F}) \cong \widetilde{H}_n(\mathcal{L}; \mathbb{F})$. Consider the inclusion map $\iota : \mathcal{L} \to \mathcal{K}$ and the retraction $\mathbf{r} : \mathcal{K} \to \mathcal{L}$. And let $\iota_\#$ and $\mathbf{r}_\#$ be the corresponding induced maps of simplicial chain complexes. We shall show that $(\iota_\#, \mathbf{r}_\#)$ is a homotopy equivalence. Clearly $\mathbf{r}_\# \iota_\#$ is the identity on the simplicial chain complex of \mathcal{L} . We show that $\iota_\# \mathbf{r}_\#$ is homotopic to the identity of the chain complex of \mathcal{K} .

Theorem 9. Every shellable simplicial complex is Cohen-Macaulay.

Appendix: A Topological Intuition Behind Chain Homotopy

Let I denote the closed interval [0,1]. Let \mathcal{K} be a piecewise linear regular cell decomposition of \mathbb{B}^n and let $f(\mathcal{K})$ be a piecewise linear embedding of \mathcal{K} in \mathbb{R}^n . Embedd \mathbb{R}^n into \mathbb{R}^{n+1} and by $p \to (p,0)$. For any subcomplex \mathcal{D} of \mathcal{K} let $H(\mathcal{D})$ denote the multiplication $f(\mathcal{D}) \times [0,1]$ and let $g(\mathcal{D})$ denote the intersection of $f(\mathcal{D}) \times [0,1]$ with the hyperplane $x_{n+1} = 0$. One can think of H both as a homotopy equivalence between f and g and as a regular cell decomposition of \mathbb{B}^{n+1} . Let us denote the topological boundary by ∂ . Then one can see that

$$\partial H(\mathcal{K}) = g(\mathcal{K}) \cup f(\mathcal{K}) \cup H(\partial \mathcal{K}).$$

Now in order to get the an algebraic formula, one has to look at the algebra of boundaries (i.e., the chain complexes). One can extend the incidence numbers of \mathcal{K} to $H(\mathcal{K})$ as follows

$$\begin{array}{lcl} \varepsilon(H(\sigma),H(\tau)) & = & -\varepsilon(\sigma,\tau) \\ \varepsilon(H(\sigma),f(\sigma)) & = & -1 \\ \varepsilon(H(\sigma),g(\sigma)) & = & 1 \\ \varepsilon(f(\sigma),f(\tau)) & = & \varepsilon(\sigma,\tau) \\ \varepsilon(g(\sigma),g(\tau)) & = & \varepsilon(\sigma,\tau) \end{array}$$

For any subcomplex \mathcal{D} set $[\mathcal{D}]$ to be the chain consisting of the summation of top dimensional faces of \mathcal{D} . For each σ we have

$$\begin{split} \partial[H(\sigma)] & = & \varepsilon(H(\sigma),g(\sigma))[g(\sigma)] + \varepsilon(H(\sigma),f(\sigma))[f(\sigma)] + \sum_{\tau < \sigma} \varepsilon(H(\sigma),H(\tau))[H(\tau)] \\ & = & [g(\sigma)] - [f(\sigma)] - [H(\partial\sigma)]. \end{split}$$

Now if we take a sum over all n-dimensional faces σ of $\mathcal K$ we get

$$\partial [H(\mathcal{K})] = [g(\mathcal{K})] - [f(\mathcal{K})] - [H(\partial \mathcal{K})].$$